1.4 Exponential Functions

The function f(x) = 2" is called an exponential function because the variable, x, is the
exponent. It should not be confused with the power function g(x) = x% in which the
variable is the base.

In general, an exponential function is a function of the form

f(x) =b*
In Appendix G we present an alterna- where b is a positive constant. Let’s recall what this means.
tive approach to the exponential and If x = n, a positive integer, then
logarithmic functions using integral
calculus. b"=b-b-----b
| —
n factors
If x = 0, then b° = 1, and if x = —n, where n is a positive integer, then
I |
b™"'=—
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FIGURE 1
Representation of y = 2, x rational

A proof of this fact is given in
J. Marsden and A. Weinstein,
Calculus Unlimited (Menlo Park, CA:
Benjamin/Cummings, 1981).

FIGURE 2
y = 2% xreal

If x is a rational number, x = p/g, where p and ¢ are integers and ¢ > 0, then
b =b" =Yo7 = (b))

But what is the meaning of 5™ if x is an irrational number? For instance, what is meant
by 2V* or 5™

To help us answer this question we first look at the graph of the function y = 2%,
where x is rational. A representation of this graph is shown in Figure 1. We want to
enlarge the domain of y = 2* to include both rational and irrational numbers.

There are holes in the graph in Figure 1 corresponding to irrational values of x. We
want to fill in the holes by defining f(x) = 2% where x € R, so that f is an increasing
function. In particular, since the irrational number \/5 satisfies

17<3 <138

we must have 217 < V3 < 918

and we know what 2'” and 2'® mean because 1.7 and 1.8 are rational numbers. Similarly,
if we use better approximations for /3, we obtain better approximations for 23

1.73< /3 <174 = 2Bl

1732 < /3 < 1.733 TR < 9V < 173

=
17320 < /3 < 17321 = 217130 < V3 < o173
=

1.73205 < /3 < 1.73206 Q17305 < 93 < 173206

It can be shown that there is exactly one number that is greater than all of the numbers

2 1.7 2 1.73 2 1.732 2 1.7320 2 1.73205
9 9 9 9

and less than all of the numbers

2 1.8 2 1.74 2 1.733 2 1.7321 2 1.73206
9 b b b

s

We define 2¥* to be this number. Using the preceding approximation process we can
compute it correct to six decimal places:

2V3 =~ 3321997

Similarly, we can define 2* (or b*, if b > 0) where x is any irrational number. Figure
2 shows how all the holes in Figure 1 have been filled to complete the graph of the
function f(x) = 2%, x € R.
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The graphs of members of the family of functions y = b* are shown in Figure 3 for
various values of the base b. Notice that all of these graphs pass through the same point
(0, 1) because b° = 1 for b # 0. Notice also that as the base b gets larger, the exponential
function grows more rapidly (for x > 0).
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If 0 < b < 1, then b* approaches 0
as x becomes large. If b > 1, then b*
approaches 0 as x decreases through
negative values. In both cases the
x-axis is a horizontal asymptote. These s
matters are discussed in Section 2.6.
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You can see from Figure 3 that there are basically three kinds of exponential functions
y = 0b".If 0 < b < 1, the exponential function decreases; if b = 1, it is a constant; and
if b > 1, itincreases. These three cases are illustrated in Figure 4. Observe thatif b # 1,
then the exponential function y = b* has domain R and range (0, ). Notice also that,
since (1/b)* = 1/b* = b, the graph of y = (1/b)" is just the reflection of the graph of
y = b* about the y-axis.
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FIGURE 4 (@y=>b, 0<b<l b)yy=1* ©y=>b" b>1

One reason for the importance of the exponential function lies in the following proper-
ties. If x and y are rational numbers, then these laws are well known from elementary
algebra. It can be proved that they remain true for arbitrary real numbers x and y.

ggg‘g\f?j&iﬁ;ﬁ‘ét‘éiﬁsﬂg i Laws of Exponents If a and b are positive numbers and x and y are any real
Laws of Exponents, click on Review numbers, then
of Algebra. L b = ppY 2. b = b

. . by

3. ) =b" 4. (ab)* = a'b*

EXAMPLE 1 Sketch the graph of the function y = 3 — 2* and determine its domain
and range.

For a review of reflecting and shifting SOLUTION First we reflect the graph of y = 2 [shown in Figures 2 and 5(a)] about the
graphs, see Section 1.3. x-axis to get the graph of y = —2* in Figure 5(b). Then we shift the graph of y = —2*
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FIGURE 5

Example 2 shows that y = 2* increases
more quickly than y = x*. To demon-
strate just how quickly f(x) = 2~
increases, let’s perform the following
thought experiment. Suppose we start
with a piece of paper a thousandth of
an inch thick and we fold it in half 50
times. Each time we fold the paper in
half, the thickness of the paper doubles,
so the thickness of the resulting paper
would be 2°°/1000 inches. How thick
do you think that is? It works out to
be more than 17 million miles!

upward 3 units to obtain the graph of y = 3 — 2" in Figure 5(c). The domain is R and
the range is (—°, 3).

(a)y=2" (b) y=-—2¢ (c)y=3-2°F u

EXAMPLE 2 Use a graphing device to compare the exponential function f(x) = 2*
and the power function g(x) = x*. Which function grows more quickly when x is large?

SOLUTION Figure 6 shows both functions graphed in the viewing rectangle [ —2, 6]

by [0, 40]. We see that the graphs intersect three times, but for x > 4 the graph of

f(x) = 2* stays above the graph of g(x) = x°. Figure 7 gives a more global view and
shows that for large values of x, the exponential function y = 2* grows far more rapidly
than the power function y = x>
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@ Applications of Exponential Functions

The exponential function occurs very frequently in mathematical models of nature and
society. Here we indicate briefly how it arises in the description of population growth
and radioactive decay. In later chapters we will pursue these and other applications in
greater detail.

First we consider a population of bacteria in a homogeneous nutrient medium. Suppose
that by sampling the population at certain intervals it is determined that the population
doubles every hour. If the number of bacteria at time 7 is p(f), where ¢ is measured in
hours, and the initial population is p(0) = 1000, then we have

p(1) = 2p(0) = 2 X 1000
p(2) = 2p(1) = 2> X 1000

p(3) = 2p(2) = 2° X 1000





